Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Genom ; 4(3): 100511, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38428419

RESUMEN

The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Alternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Próstata/metabolismo , Mutación , Genómica , Evolución Molecular
2.
Nat Cancer ; 5(2): 228-239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286829

RESUMEN

Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias , Humanos , Neoplasias/genética , Genoma , Aneuploidia , Genómica
3.
Front Endocrinol (Lausanne) ; 14: 1247542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964967

RESUMEN

Background: CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods: We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results: CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion: Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.


Asunto(s)
Imidazoles , Oximas , Prolina/análogos & derivados , Tiocarbamatos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Neoplasias de la Tiroides/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasa 4 Dependiente de la Ciclina
5.
Mol Oncol ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36453028

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.

6.
Genome Biol ; 23(1): 241, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376909

RESUMEN

Aneuploidy, chromosomal instability, somatic copy-number alterations, and whole-genome doubling (WGD) play key roles in cancer evolution and provide information for the complex task of phylogenetic inference. We present MEDICC2, a method for inferring evolutionary trees and WGD using haplotype-specific somatic copy-number alterations from single-cell or bulk data. MEDICC2 eschews simplifications such as the infinite sites assumption, allowing multiple mutations and parallel evolution, and does not treat adjacent loci as independent, allowing overlapping copy-number events. Using simulations and multiple data types from 2780 tumors, we use MEDICC2 to demonstrate accurate inference of phylogenies, clonal and subclonal WGD, and ancestral copy-number states.


Asunto(s)
Neoplasias , Humanos , Filogenia , Neoplasias/genética , Neoplasias/patología , Variaciones en el Número de Copia de ADN , Exoma , Genoma Humano
7.
Nature ; 606(7916): 984-991, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705804

RESUMEN

Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy1,2. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance3-5. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Neoplasias , Aneuploidia , Cromotripsis , Variaciones en el Número de Copia de ADN/genética , Haploidia , Recombinación Homóloga/genética , Humanos , Pérdida de Heterocigocidad/genética , Mutación , Neoplasias/genética , Neoplasias/patología , Secuenciación del Exoma
8.
Nature ; 606(7916): 976-983, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705807

RESUMEN

Chromosomal instability (CIN) results in the accumulation of large-scale losses, gains and rearrangements of DNA1. The broad genomic complexity caused by CIN is a hallmark of cancer2; however, there is no systematic framework to measure different types of CIN and their effect on clinical phenotypes pan-cancer. Here we evaluate the extent, diversity and origin of CIN across 7,880 tumours representing 33 cancer types. We present a compendium of 17 copy number signatures that characterize specific types of CIN, with putative aetiologies supported by multiple independent data sources. The signatures predict drug response and identify new drug targets. Our framework refines the understanding of impaired homologous recombination, which is one of the most therapeutically targetable types of CIN. Our results illuminate a fundamental structure underlying genomic complexity in human cancers and provide a resource to guide future CIN research.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias , Inestabilidad Cromosómica/genética , Recombinación Homóloga/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
9.
J Pathol ; 257(4): 466-478, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35438189

RESUMEN

Intratumour heterogeneity (ITH) and tumour evolution are well-documented phenomena in human cancers. While the advent of next-generation sequencing technologies has facilitated the large-scale capture of genomic data, the field of single-cell genomics is nascent but rapidly advancing and generating many new insights into the complex molecular mechanisms of tumour biology. In this review, we provide an overview of current single-cell DNA sequencing technologies, exploring how recent methodological advancements have enumerated new insights into ITH and tumour evolution. Areas highlighted include the potential power of single-cell genome sequencing studies to explore evolutionary dynamics contributing to tumourigenesis through to progression, metastasis, and therapy resistance. We also explore the use of in situ sequencing technologies to study ITH in a spatial context, as well as examining the use of single-cell genomics to perform lineage tracing in both normal and malignant tissues. Finally, we consider the use of multimodal single-cell sequencing technologies. Taken together, it is hoped that these many facets of single-cell genome sequencing will improve our understanding of tumourigenesis, progression, and lethality in cancer, leading to the development of novel therapies. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias , Carcinogénesis , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/genética , Reino Unido
10.
Mol Cell Endocrinol ; 541: 111491, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740746

RESUMEN

The vast majority of thyroid cancers originate from follicular cells. We outline outstanding issues at each step along the path of cancer patient care, from prevention to post-treatment follow-up and highlight how emerging technologies will help address them in the coming years. Three directions will dominate the coming technological landscape. Genomics will reveal tumoral evolutionary history and shed light on how these cancers arise from the normal epithelium and the genomics alteration driving their progression. Transcriptomics will gain cellular and spatial resolution providing a full account of intra-tumor heterogeneity and opening a window on the microenvironment supporting thyroid tumor growth. Artificial intelligence will set morphological analysis on an objective quantitative ground laying the foundations of a systematic thyroid tumor classification system. It will also integrate into unified representations the molecular and morphological perspectives on thyroid cancer.


Asunto(s)
Invenciones/tendencias , Oncología Médica/tendencias , Neoplasias de la Tiroides , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Continuidad de la Atención al Paciente/tendencias , Atención a la Salud/métodos , Atención a la Salud/tendencias , Endocrinología/tendencias , Genómica/métodos , Genómica/tendencias , Humanos , Oncología Médica/métodos , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/terapia
11.
Nat Commun ; 12(1): 7064, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862364

RESUMEN

Loss-of-function mutations in the RB1 tumour suppressor are key drivers in cancer, including osteosarcoma. RB1 loss-of-function compromises genome-maintenance and hence could yield vulnerability to therapeutics targeting such processes. Here we demonstrate selective hypersensitivity to clinically-approved inhibitors of Poly-ADP-Polymerase1,2 inhibitors (PARPi) in RB1-defective cancer cells, including an extended panel of osteosarcoma-derived lines. PARPi treatment results in extensive cell death in RB1-defective backgrounds and prolongs survival of mice carrying human RB1-defective osteosarcoma grafts. PARPi sensitivity is not associated with canonical homologous recombination defect (HRd) signatures that predict PARPi sensitivity in cancers with BRCA1,2 loss, but is accompanied by rapid activation of DNA replication checkpoint signalling, and active DNA replication is a prerequisite for sensitivity. Importantly, sensitivity in backgrounds with natural or engineered RB1 loss surpasses that seen in BRCA-mutated backgrounds where PARPi have established clinical benefit. Our work provides evidence that PARPi sensitivity extends beyond cancers identifiable by HRd and advocates PARP1,2 inhibition as a personalised strategy for RB1-mutated osteosarcoma and other cancers.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Osteosarcoma/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Retinoblastoma/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Ratones , Osteosarcoma/genética , Osteosarcoma/patología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reparación del ADN por Recombinación , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Cancer ; 2(8): 835-852, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34734190

RESUMEN

Comparison of intratumor genetic heterogeneity in cancer at diagnosis and relapse suggests that chemotherapy induces bottleneck selection of subclonal genotypes. However, evolutionary events subsequent to chemotherapy could also explain changes in clonal dominance seen at relapse. We, therefore, investigated the mechanisms of selection in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) during induction chemotherapy where maximal cytoreduction occurs. To distinguish stochastic versus deterministic events, individual leukemias were transplanted into multiple xenografts and chemotherapy administered. Analyses of the immediate post-treatment leukemic residuum at single-cell resolution revealed that chemotherapy has little impact on genetic heterogeneity. Rather, it acts on extensive, previously unappreciated, transcriptional and epigenetic heterogeneity in BCP-ALL, dramatically reducing the spectrum of cell states represented, leaving a genetically polyclonal but phenotypically uniform population with hallmark signatures relating to developmental stage, cell cycle and metabolism. Hence, canalization of cell state accounts for a significant component of bottleneck selection during induction chemotherapy.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfoma de Burkitt/tratamiento farmacológico , Ciclo Celular , Humanos , Quimioterapia de Inducción , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Recurrencia
13.
Cell Syst ; 12(10): 955-957, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34672959

RESUMEN

Accurately identifying the subclones that make up tumors is critical for understanding cancer biology. In an article in this issue of Cell Systems, Satas et al. examine mutations with an evolutionary perspective to decipher the composition of tumors.


Asunto(s)
Neoplasias , Humanos , Mutación , Neoplasias/genética
14.
Nat Biotechnol ; 39(12): 1589-1596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34282324

RESUMEN

A substantial fraction of the human genome displays high sequence similarity with at least one other genomic sequence, posing a challenge for the identification of somatic mutations from short-read sequencing data. Here we annotate genomic variants in 2,658 cancers from the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort with links to similar sites across the human genome. We train a machine learning model to use signals distributed over multiple genomic sites to call somatic events in non-unique regions and validate the data against linked-read sequencing in an independent dataset. Using this approach, we uncover previously hidden mutations in ~1,700 coding sequences and in thousands of regulatory elements, including in known cancer genes, immunoglobulins and highly mutated gene families. Mutations in non-unique regions are consistent with mutations in unique regions in terms of mutation burden and substitution profiles. The analysis provides a systematic summary of the mutation events in non-unique regions at a genome-wide scale across multiple human cancers.


Asunto(s)
Genoma Humano , Neoplasias , Genoma Humano/genética , Genómica , Humanos , Mutación/genética , Neoplasias/genética , Secuencias Reguladoras de Ácidos Nucleicos
15.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33831375

RESUMEN

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Asunto(s)
Heterogeneidad Genética , Neoplasias/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Bases de Datos Genéticas , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
16.
Nature ; 592(7853): 302-308, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762732

RESUMEN

Our knowledge of copy number evolution during the expansion of primary breast tumours is limited1,2. Here, to investigate this process, we developed a single-cell, single-molecule DNA-sequencing method and performed copy number analysis of 16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The results show that breast tumours and cell lines comprise a large milieu of subclones (7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and genome doubling, there was a period of transient genomic instability followed by ongoing copy number evolution during the primary tumour expansion. By subcloning single daughter cells in culture, we show that tumour cells rediversify their genomes and do not retain isogenic properties. These data show that triple-negative breast cancers continue to evolve chromosome aberrations and maintain a reservoir of subclonal diversity during primary tumour growth.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Células Clonales/metabolismo , Células Clonales/patología , Evolución Molecular , Secuencia de Bases , Línea Celular Tumoral , Linaje de la Célula , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Inestabilidad Genómica/genética , Humanos , Pérdida de Heterocigocidad/genética , Modelos Genéticos , Tasa de Mutación , Imagen Individual de Molécula , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
17.
Nat Commun ; 12(1): 1119, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602930

RESUMEN

Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T Reguladores/inmunología , Antígenos de Neoplasias/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Células Clonales , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Activación de Linfocitos/inmunología , Estadificación de Neoplasias , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de la Célula Individual , Células TH1/inmunología , Transcriptoma/genética
18.
Nat Methods ; 18(2): 144-155, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398189

RESUMEN

Subclonal reconstruction from bulk tumor DNA sequencing has become a pillar of cancer evolution studies, providing insight into the clonality and relative ordering of mutations and mutational processes. We provide an outline of the complex computational approaches used for subclonal reconstruction from single and multiple tumor samples. We identify the underlying assumptions and uncertainties in each step and suggest best practices for analysis and quality assessment. This guide provides a pragmatic resource for the growing user community of subclonal reconstruction methods.


Asunto(s)
ADN de Neoplasias/genética , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Algoritmos , Humanos , Polimorfismo de Nucleótido Simple
19.
J Pathol ; 252(4): 433-440, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866294

RESUMEN

The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3-3A or H3-3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3-mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3-mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Óseas/genética , Transformación Celular Neoplásica/genética , Metilación de ADN , Tumor Óseo de Células Gigantes/genética , Mutación , Neoplasias Óseas/patología , Transformación Celular Neoplásica/patología , Tumor Óseo de Células Gigantes/patología , Humanos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Secuenciación Completa del Genoma
20.
Nature ; 578(7793): 122-128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025013

RESUMEN

Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.


Asunto(s)
Evolución Molecular , Genoma Humano/genética , Neoplasias/genética , Reparación del ADN/genética , Dosificación de Gen , Genes Supresores de Tumor , Variación Genética , Humanos , Mutagénesis Insercional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...